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SUMMARY

We deal here with the numerical simulation of a multiscale model of concentrated suspensions. We
compare the deterministic solution procedure for the Fokker Planck equation with the Monte Carlo sim-
ulation of the stochastic di�erential equation. In particular, we examine questions of variance reduction.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We simulate here the mesoscopic model proposed by H�ebraud and Lequeux in Reference [4]
for simple shear �ows of concentrated suspensions. Let a sample of material be divided into
blocks carrying a stress �. Then, the probability P(t; �) of �nding a stress � in a block, at
time t, evolves as follows:

@
@t
P(�; t) =−G0 @yu(t) @@� P(�; t) +D(t)

@2

@�2
P(�; t)

−H (|�|¿�C)
T0

P(�; t) +
1
T0

(∫
|�′|¿�C

P(�′; t) d�′
)
�0(�) (1)

Here D(t)=
∫

|�|¿�C P(�; t) d�, H (|�|¿�C) denotes the characteristic function of the open set
R\[−�C; �C] and �0 the Dirac mass. Each term arising in Equation (1) (HL equation in short)
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has a clear physical interpretation. When a block is sheared, the stress of this block evolves
with a variation rate proportional to the shear rate @yu (G0 is an elasticity constant). When the
modulus of the stress overcomes a critical value �C , the block becomes unstable and may relax
into a state with zero stress after a characteristic relaxation time T0. This phenomenon induces
a rearrangement of the blocks that is modelled through the di�usion term D(p(t))@2��p. The
di�usion coe�cient D(p(t)) is assumed to be proportional to the amount of stress that has
to be redistributed by time unit and the positive parameter � is supposed to represent the
‘mechanical fragility’ of the material. In practice, the shear rate is not uniform in space. We
therefore introduce the following micro–macro model to better describe the coupling between
the macroscopic �ow and the microstructure of concentrated suspensions:

�@tu(y; t) = @y�(y; t)

@tP(y; �; t) =−G0@yu(y; t)@�P(y; �; t) +D(t; y)@2��P(y; �; t)

− H (|�|¿�C)
T0

P(y; �; t) +
1
T0

(∫
|�′|¿�C

P(�′; y; t) d�′
)
�0(�)

�(y; t) =
∫
R
�P(t; y; �) d�

This system is supplied with the following initial and boundary conditions:

u(0; y) = 0 for all y ∈ (0; L)
P(0; y; �) = P0(y; �) for all(y; �) ∈ (0; L)× R
u(t; 0) = 0 for all t ∈ [0; T ]
u(t; L) = V (t) for all t ∈ [0; T ]

Existence and uniqueness of solutions to this system are studied in Reference [1]. We focus
here on computational issues.

2. NUMERICAL SIMULATIONS

The system we look at has no analytical solution (except in the case when �C =0). We
then make use of numerical simulation in order to check if the model correctly reproduces
some physical features of suspensions. We consider �rst a discretization of the momentum
conservation equation. Let n dt be the number of time steps, �t the time step, n dy the number
of �nite elements in the interval (0; L) and �y the space step. In the following, the indices
n and j, respectively, denote the time index and the space index. Using a P1 �nite element
approximation for u and a P0 one for �, we �nd the algebraic form

�
d
dt
MU (t)= − LT (t)− AV (t)
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where M is the matrix (Mij)16i; j6n dy−1 with Mij =
∫ L
0 ’i’j dy, A is the vector (Ak)16k6n dy−1

with Ak =
∫ L
0 ’K’k dy, and L is the matrix (Ljk)16j; k6n dy with Ljk =

∫ L
0 ’

′
j�k dy. The vector

U (t) and T (t) are, respectively, the velocity and the stress vector. For giving Un, Tn and Vn,
a discretization of this equation by an explicit Euler method gives

Un+1 =Un +
�t
�
M−1·Bn

with Bn= −LT (n�t)−AV (n�t). We are now, interested by the discretization of Equation (1)
and the approximation of T (t). Let us �rst �x Equation (1) on space. Two approaches will
be used for this purpose: a deterministic approach and a stochastic approach. Let us only
recall that stochastic simulation techniques provide e�cient alternatives to deterministic tech-
niques and are powerful tools for solving the usually non-linear equations describing polymer
dynamics [6].

2.1. Deterministic approach

Let as assume that Pn, @yun and Dn are given. We apply an operator splitting method [8] to
approximate the solution at time (n+ 1)�t of (1)

P((n+ 1)�t)= e(�t=2A(ndt)) e(�t=2D) e(S �t) e(�t=2D) e(�t=2A(ndt)·P(ndt) (2)

with A(t)=−G0@yun@� being the advection operator, D=Dn@�� the di�usion operator and

S=− H (|�|¿�C)
T0

+
1
T0

(∫
|�′|¿�C

•(�′; y; t) d�′
)
�0(�)

the ‘sources’ operator. This allows us to treat separately these three operators. Standard
schemes will be used to discretize each one. We use the Lax Friedrich scheme to approx-
imate the solution of the advection problem. This scheme is stable provided that the CFL
condition |G0@yun�t=��|¡ 1 is satis�ed. The source problem is solved analytically in the
case when |�| �=0. We use the fact that ∫R P d�=1 to approach Pn+1k;0 by 1=��−∑m �=0 P

n+1
k;m .

The di�usion problem is discretized as follows: if D�t=��2¡ 1
2 , we use a �nite di�erence

method on � and an explicit Euler scheme on time. Else, we use a �nite element method on
� and an implicit Euler method on time. Finally, we approach the global stress vector �nk by
interpolation as follows:

�k(n�t)=
∫
R
�Ph((k + 1=2)�y; �; n�t) d� (3)

2.2. Stochastic approach

As in the CONNFFESSIT approach [7], which was introduced to perform �ows calcula-
tions for polymeric liquids, we can combine the �nite elements method used to discretize
Equation (2) with stochastic simulation techniques to discretize (1). The stochastic process
associated to the partial di�erential Equation (1) is a non-linear jump-di�usion stochastic pro-
cess in the sense of McKean, which is produced with the rate 1=T0 when |�|¿�C . Let us
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assign N particles to each point (k + 1=2)�y. The particles evolve then, as follows:

If |�nk; i|¡�C then �n+1k; i =�
n
k; i +G0 (U

n
k+1 −Un

k )=�y)�t + �k
√
�tGni

else if !ni ∈
[
0;
�t
T0

]
then �n+1k; i =0

else �n+1k; i =�
n
k; i +G0 (U

n
k+1 −Un

k )=�y)�t + �k
√
�tGni

with �nk; i the stress on time n�t and at (k + 1=2)�y of the ith particle, �
n
k =

√
2Dnk , with

Dnk =1=N Cardinal{i; |�nk; i|¿�C} and Gni and !ni are random variables which, respectively,
follow the Gaussian law and the uniform law on [0,1]. The global stress is then approximated
by the empirical mean

�nk � 1
N

N∑
i=1
�nk; i

2.3. Comparison between deterministic simulations and stochastic simulations

Let us analyse the numerical results (see Figure 1) obtained by the two approaches (determin-
istic and stochastic) described above, for a start-up shear �ow between parallel plates. The
physical parameters are: �= �=L=1, T0 = 0:5, �C =G0 = 2. The numerical parameters are:
T =10, n dt=10000, n dy=200, N =1000 for the stochastic approach and �∈ [−5; 5] and
n ds=1000 in the deterministic approach. The computation was carried out on a Pentium IV,
2.4Ghz with 512Mb RAM and run with Linux. The CPU with the stochastic approach was
about 1h35 and the memory required was 15Mbytes. The CPU with deterministic approach
was about 1h27 and the memory required was 14.8Mbytes. Clearly, results given by the
two methods are similar. The advantage of the stochastic simulation method is its simplicity.
Therefore, this method will be useful especially for high dimensions. Let us, �nally, note
the overshoot of the velocity (see Figure 2), which is a typical behaviour of concentrated
suspensions.

2.3.1. Remark. Adjust the parameters �, G0 and �C , and T0 is necessary to validate the model.
This can be carried out using optimization techniques (see Reference [3]) by comparing the
numerical results with the experimental one recently obtained by NMR techniques [2].

3. VARIANCE REDUCTION METHODS

As often, is necessary to make use of variance reduction techniques. In the present context,
the techniques were introduced in References [5] and [7].

3.1. Brownian con�guration �elds

The main idea here is to correlate the Brownian motion in space. For this, let us simply
consider that at the initial time, all particles founded at the same point k in space, have the
same value and that at every time step, all particles in the same point k experience the same
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Figure 1. Deterministic (left) and stochastic (right) computations of start-up Couette �ow: velocity
pro�les u(y) and stress pro�les tau(y) at various time steps.
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Figure 2. Overshoot of the velocity.
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Figure 3. Variances of u and � (versus space) for simulations without variance reduction, with Brownian
con�guration �elds (BCF) and with BCF and Control variates (BCF+CV).

Brownian motion. As it is shown in Figure 3, this technique reduces the variance on u and
increases it for �.

3.2. Control variates

The basic idea here is to write �nk as �
n
k = E(�nk − �̃nk) + E(�̃

n
k), with E(�̃

n
k) easy to calculate

and such that Var(�nk − �̃nk)¡Var(�nk). Let us, as in References [5, 7] set �̃
n
k equal to �

n
k at
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equilibrium (that is when @yu=0). The equation veri�ed by �̃
n
k is discretized as Equation (1).

We use at each time step n the same random numbers to calculate �̃
n
k and �

n
k . The spatial

�uctuations of both velocity and stress are strongly reduced as shown in Figure 3.

4. CONCLUSION

In this work, we have presented a micro–macro model describing the Couette �ow of con-
centrated suspensions. Two di�erent methods were performed to simulate numerically the
problem. Numerical results of a simulation of a start-up test given by the two methods were
compared and were shown to be similar. Finally, variance reduction schemes were developed
to reduce the noise when the stochastic approach is used. The validity of the algorithms was
con�rmed by numerical results.
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